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r NTRODUMTON

The problem addressed in this research is the lack of a robust

structural analysis computational procedure for determining the initial

equilibrium configuration and prestress state of tensioned structures.

The solution of this problem is widely regarded as a major stumbling

block to efficient design and analysis of tensioned structures, i.e.,

ocean cable structures and land-based fabric and cable structures.

The following are quotes from some investigators who are concerned

with computational cable dynamics that relate to the difficulty of com-

puting an initial equilibrium configuration solution:

1. Webster (1977), "Perhaps the most frustrating problem

encountered in analyzing cable structures using dis-

placement components is that of getting a stable initial

configuration."

2. Liu (1977), "The results of dynamic simulation of the

behavior of undersea cable structures depends strongly

on the initial configuration of the system..."

3. Shields and Zueck (1984), "Techniques for simulating

response of small deep water platforms using finite

element modeling of the mooring legs are not presently

available."

4. Webster (1984), "Our major numerical problems appear to be

ill-conditioning (of the stiffness matrix) and extremely

sensitive position dependent behavior in mooring systems.

All of this is mainly in the static solutions."



Three iterative solution algorithms for nonlinear static problems

were addressed in this study. The first two have been used in nonlinear

finite element analysis of cable systems for many years and may be re-

garded as status quo solution algorithms. The third algorithm is a

promising algorithm for structures exhibiting strong nonlinear behavior

known as the automated dynamic relaxation (ADR) algorithm.

The ADR algorithm possesses some attractive theoretical features.

These features provide for constant monitoring and control of the sta-

bility of the solution process by correcting and improving numerical

conditioning of the model automatically. The status quo methods do not

monitor or control numerical conditioning of the model that may exhibit

pathological behavior particularly when an otherwise tensioned structure

approaches a slack condition state.

A large set of small cable test problems was designed to evaluate

the robustness of each algorithm. In these test problems, the starting

conditions were designed purposely to be onerous to test the ability of

the algorithms to seek the correct static equilibrium position from

rather arbitrary starting configurations.

Objective

The objective of this research is to compare the robustness of full

Newton and modified Newton solution algorithms with the ADR solution

algorithm for highly kinematically, nonlinear, static, cable systems.

The Newton-based algorithms represent the status quo solution methods

while the ADR is a promising method for the class of problems considered.

Iackground

Leonard (1987) suggests that the task of structural analysis of

cable systems and tensioned fabric systems can conveniently be viewed in

terms of a Phase I and a Phase II problem. In the first phase the solu-

tion to the static, prestress configuration is sought. This phase is

also referred to as form finding, shape finding, or the initial equi-

librium problem. In the second phase the response due to the in-service
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loads is sought. The two-phase approach emphasizes that there must first

be determined a static equilibrium configuration, about which either

static or dynamic deflections will occur due to either prescribed static

or dynamic working loads.

Both phases are characterized, in general, by nonlinear kinematic

behavior. The first phase will most certainly be nonlinear, whereas the

second phase may less frequently be found to be nonlinear. However, in

general, solution schemes must be developed that anticipate nonlinear

kinematic behavior for both phases. The solution schemes for each phase

may be somewhat different because the first phase is always a static

problem whereas the second phase may often be a dynamic problem. In the

dynamic case, it has long been known that the inertia of the structural

system does facilitate stability of the numerical solution.

The system of equations, which is the focus of the solution methods

presented, is formed by a displacement-based finite element spatial dis-

cretization of an arbitrarily complex cable network. Cables systems are

flexible and their stiffness ranges from zero when in a slack condition

to significant values when in a taut condition. Thus they are character-

ized by nonlinear kinematic behavior so that the stiffness of the system

depends on the displacements of the system. Further, the degree of non-

linearity is highly variable. Indeed, with sufficient tautness they may

be linear in some cases. But when they possess substantial sag or when

they approach a slack condition, they may become highly nonlinear. Since

this entire range of nonlinearity can be experienced in an engineering

application, the solution algorithm that will work best must possess

accuracy and robustness.

Robustness of a solution algorithm relates to the degree to which

the algorithm is foolproof in engineering application. It is princi-

pally this characteristic, along with accuracy, that is sought and

investigated in the solution algorithms addressed in the present study.

Other related performance characteristics such as convergence, speed,

computational efficiency, and storage requirements are important, but of

a secondary consideration. This is because it is believed that even the

largest and most complex cable structures result in only moderately large

systems of equations relative to typical finite element systems today.
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(This may not be as true of tensioned fabric structural systems.) This

is in part due to the small number of unknowns associated with cable

elements as compared with continuum and structural elements. Even

three-dimensional tensioned fabric structures are largely composed of

the simplest of continuum elements. Further, in practical engineering

applications, efficiency relates to the ability to get the project com-

pleted, as contrasted with the computational efficiency of the algorithm.

Thus, the ability to converge to the correct solution in a reliable man-

ner, even at the expense of speed and storage performance, is the key to

a good solution algorithm for practical analysis of cable and tensioned

fabric structures.

Unilateral tension stress behavior and allowance for slackness in

cable systems introduces another form of nonlinearity that is present

irrespective of large deflections and irrespective of any consideration

for nonlinearity in external loads or in cable material response. One

proper way to proceed is to supplement the linear or nonlinear restoring

force equations of the cable system with constraint equations that deter-

mine whether or not a cable is slack. If the constraint equations are

implemented as equalities, then the cable displacement variables are

supplemented by Lagrange multiplier variables in the state vector of

system unknowns. If the constraint equations are introduced as inequa-

lities, then so-called slack variables* may also be introduced as un-

knowns. The practical computational impact of this is that the cable

stiffness matrix necessary to properly describe and track slack response

becomes indefinite and ill-conditioned, even for an otherwise linear

cable system. Another, more simplified, way to proceed is to use truss

elements and to remove the stiffness contribution of these elements to

the structure stiffness matrix when they are in compression. Similarly,

their stiffness contribution must be retrieved if and when the element

deformation once again indicates extension.

*"Slack variables" is mathematical terminology from optimization theory.
Interestingly, in the present application they would indeed represent
a kinematic measure of slackness of a cable.
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Any additional nonlinearities introduced into the system that are

due to cable material nonlinearity, do not seem relatively to be that

troublesome. Appropriate nonlinear constitutive models, once they are

identified, would not add that much more computational complexity over

and above that which is due already to appropriately account for large

deflections, equations of constraint, and nonconservative excitation.

That is, if appropriate nonlinear finite element solution algorithms can

be found for the principal sources of nonlinearity in cable systems,

they may be expected to be sufficiently general to work well also when

material nonlinearity is present.

However, in this regard, mention should be made of the strength of

cables, or more importantly their loss of strength under certain condi-

tions. In the case of wire rope, Lucht and Donecker (1982) report that

a kinked cable's strength may be reduced to as low as one-half the cable's

rated strength. An interesting analysis of the dynamics to form kinks

is presented by Yabuta, et al. (1982). Other strength reduction factors

such as fatigue and corrosion must also be accounted for in conjunction

with constitutive models used for predicting cable system performance.

Cable Roof System. Structural analysis of cable systems has been

under development for many years, particularly for cable roof systems.

Scalzi, et al., (1971) published an American Society of Civil Engineers

(ASCE) Special Structures Committee report entitled "Cable Suspended

Roof Construction, State-of-the-Art." A good deal of historical infor-

mation is contained in this report. Part II of this report, "Analysis

oC Suspension Structures," is summarized briefly in the following for

the purpose of bringing into relief the computer-based, finite element

procedures that have been emphAsized in practice since this report was

written.

The ASCE report emphasized static analysis methods (with only brief

mention of dynamic analysis). It explicates the difficulty of the Phase I

problem that is typical of static, nonlinear cable systems in determining

the initial shape, i.e., the equilibrium position under the initial loading

consisting of dead load and prestress forces. It describes the necessity

for extensive trial-and-error computations, directly referring to the
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kinematic nonlinearity of the Phase I problem. It even mentions the

practice of constructing physical models to obtain reliable starting

values for describing the suspension system shape to effectively ini-

tiate the trial-and-error computation. The main point that is made,

regarding the initial shape, in the ASCE report and that also charac-

terizes the nature of the Phase I problem, can be paraphrased in the

following two sentences:

The prescribed shape implies, by virtue of static equilibrium,

a requisite prestress force. Alternatively, the prescribed

prestress force implies, by virtue of static equilibrium, a

requisite shape.

Consequently, in the design and analysis of cable systems (and

tensioned fabric systems), one cannot simultaneously prescribe both the

shape and the prestress force independently of equilibrium. One can

prescribe system parameters such as unstrained cable length, cable

stiffness, coordinates of support points, spans, and the dead load.

Then by assuming some "guessed-at" cable configuration as a starting

point and invoking equilibrium conditions, compute an initial shape and

the corresponding prestress forces. If these are unsatisfactory for

design, the prescribed parameters are appropriately adjusted and the

system is reanalyzed for a shape and prestress that satisfies equilib-

rium. The iterative process continues until a satisfactory design

solution is achieved for both the initial shape and a corresponding

level of prestress force. However, a major problem is the lack of an

efficient analysis method for the equilibrium configuration.

Argyris and Scharpf (1972) presented one of the first full discus-

sions of analysis of static, nonlinear prestressed cable roof networks

based on the finite element displacement method. Their purpose was

primarily to estimate the basic equilibrium state of networks under

prestress and dead loads. They term this the "central" problem, and

that is a telling characterization of the importance of the Phase I
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problem.* Simple truss elements were employed that possessed both an

elastic and a geometric stiffness matrix. These matrices are derived in

the following section of the present report.

In addition to the use of finite element technology, this paper

also introduced the use of an iterative method for solving the nonlinear

algebraic equations that resulted from the finite element spatial dis-

cretization of the cable network. The iterative method was developed

from engineering intuition and was essentially a relaxation of the re-

sidual nodal force, i.e., gradual reduction of the difference between

the internal force and external force at each node point in the network.

Moreover, they showed that their physically derived iterative method was

equivalent to the well known Newton-Raphson mathematical iterative pro-

cedure.

The Newton iteration method is a standard method for the solution

of nonlinear algebraic systems. It may be used in conjunction with load

incrementation, i.e., the external load is applied in increments, and

iteration to achieve equilibrium according to a preset tolerance is

conducted within each load increment. This is referred to as an in-

cremental/iterative procedure. Argyris and Scharpf noted that no con-

vergence problems occurred in their computational experience. They

attributed this to the use of a high-precision computer with a 60-bit

word length as well as good physical intuition in selecting an initial

geometry approximately satisfying equilibrium. However, there is evi-

dence that they carefully watched the progress of the computed solution,

and employed ad hoc techniques to adjust the system in cases where, for

example, (truss element) forces tended towards compression.

Their computer program was later extended to handle static in-service

load conditions for the Phase II problem. The same incremental/iterative

procedure was used. They determined solutions for uniform and nonuniform

snow loads, uniform wind loads, and uniform temperature loads. The initial

*It is interesting to note that this work was borne out of a practical
need for structural analysis and design of cable net roof systems for
facilities in the 1972 Olympiad.
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configuration was that of the equilibrium position of the structure under

dead load and prestress force. In Argyris, et al. (1973), the dynamics

of cable systems was addressed with attention given to the method of

temporal integration for both linear and nonlinear systems.

It should be mentioned that there are also two nonlinear finite

element approaches pertaining to the Phase II cable problem for the

solution of nonlinear dynamic equations of motion that do not require

the formation and solution of a discrete system of equations. One is to

employ a direct temporal integration of the equations of motion and an

explicit integration operator, such as the central difference operator.

An algebraic system is never formed, and a direct, step-by-step march

through time is used to solve the equations of motion directly. This is

a direct integration method and it is explicated well in many works that

discuss structural dynamics, for example see Bathe (1982). It is gen-

erally applicable to structures subjected to highly transient loads.

The other method is to employ the modal analysis procedure typical of

linear systems analysis. It too is a direct attack on the solution of

the set of nonlinear differential equations of motion. This method,

which may be called nonlinear mode superposition, has been studied by

Morris (1975 and 1977) and Geschwindner (1981) to solve land-based cable

systems. It is based on updating the eigensolutions as the system's

nonlinearity changes. Others are developing a similar methodology which

is based on updating the orthogonal Ritz or Lanczos vectors in reduced

subspaces; see for example, Wilson, et al. (1982); Akkari (1983); and

Mish, et al. (1985). The motivation for this method is generally to

reduce the size of the nonlinear structural dynamics problem, while

retaining the important response and behavior of the structural model.

Ocean Cable Systems. Ocean cable systems are especially difficult

to analyze in the same sense as are aeroelastic tensioned fabric systems

for land-based cable system applications. This is due to many factors,

but the two most important factors are their nonlinear geometric res-

ponse, which has been discussed above for cables in general and which

is a problem in structural mechanics, and their nonlinear hydrodynamic

or aerodynamic response, which is a problem in fluid mechanics. A finite
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element analysis procedure for the solution of ocean cable and aeroelastic

tensioned systems that would couple the equations of motion of the struc-

ture and the fluid is currently insurmountable. Few approaches aimed at

practical analysis of these systems consider this true fluid-structure

interaction approach.

An important work in ocean cable systems is the Ph.D. dissertation

by Webster (1976) for it recognized and deals directly with the severe

nonlinearity of ocean cable systems. Further, he organizes a general

purpose solution approach for these systems around three-dimensional,

nonlinear finite element technology.

Webster discusses large deflections occurring in ocean cable sys-

tems, and states that the dynamic response must be referenced to the

deformed configuration of static equilibrium. Though he does not label

it as such, implied in Webster's approach is the two-phase problem for

cable analysis. The first phase is the establishment of a static equi-

librium configuration due to the cable's prestress force and weight in

water under quiescent conditions. The second phase is the calculation

of large deflections that occur relative to the static equilibrium con-

figuration due to in-service loads such as the dynamic forces of either

steady or unsteady flows induced by waves and currents.

The practical computational effect of this is that the stiffness

matrix for the cable structure becomes a function of displacements and,

therefore, becomes nonlinear. However, in ocean cable systems displace-

ments and spans are extremely large, and the geometric nonlinearity is

perhaps more onerous in this class of problems than in any other in

structural engineering. Further, very low tension states often exist

causing the stiffness matrix to become nearly singular and to behave

pathologically.

External hydrodynamic loads are difficult to describe mathemati-

cally due to a severely unpredictable environment. Once again tract-

ability intervenes and a simplified, deterministic flow theory can be

assumed. Then a generalized version of the Morison equation can be

applied that includes a drag force term that is due to relative tangen-

tial flow along the cable, as well as the typical inertia and drag force

terms that are due to relative normal flow. Further, these forces are
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path dependent and, therefore, nonconservative. The practical computa-

tional impact of this is that the external force vector in the system of

equilibrium equations is nonlinear since it depends on the instantaneous

cable configuration.

The phenomenon of vortex-induced response of marine cables is dis-

cussed by Griffin, et al. (1981) and Griffin (1982). This phenomena

requires further research where design measures for mitigation of strum-

ming are not effective. Further research is also required to describe

the hydrodynamic loads generated on large, rigid bodies such as ships,

platforms, and buoys that are moored using cable systems. These loads

constitute the Phase II excitation for the mooring system's nonlinear

dynamic response. Palo and Owens (1982) and Wu (1984) consider current-

induced loads on moored vessels. These loads are considered important

components in the overall consideration of cable system analysis because

in actuality the hydrodynamic excitation on the hulls of moored vessels

and the structural cable response of the mooring system are coupled

hydroelastically.

Tensioned Fabric Systems. From the viewpoint of structural behav-

ior, tensioned fabric structures are the two-dimensional analogue of

cable structures. The Phase I and Phase II problems are conceptually

the same. The spans involved with tensioned fabric structures are not

as large as those for ocean cable systems, but the sag ratios are roughly

equivalent, so the strength of the kinematic nonlinearity can be very

similar. Much computational effort goes into obtaining the initial con-

figuration solution of a tensioned fabric structure, see for example

Haber and Abel (1982) and Hsu (1984).

Another related observation in computational aspects of tensioned

fabric structures is that even when using special purpose engineering

analysis software for these systems, often an accurate Phase I solution

is ignored. In Shugar, et al., (1985) the initial displacement config-

uration was obtained by the Phase I static solution algorithm (Newton),

but the prescribed, corresponding prestress conditions were assumed, and
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therefore could not have borne any relationship to the prestress condi-

tions naturally occurring in the actual structure.* Though the prestress

condition is important information, it remained unknown. The difficulty

is that the software employed required the prescription of an assumed

prestress level. It would then directly proceed to calculate a cor-

responding initial configuration by invoking the conditions of static

equilibrium. Instead, what is required is a capability to use prescrib-

ed parameters such as required spans and the geometry of the unstrained

fabric pattern, and then employ a Phase I solution algorithm robust

enough to calculate both the initial configuration and the corresponding

prestress due to dead load.

NONLINEAR CABLE FINITE EEM NTRIX

The two-dimensional, static, nonlinear computer programs written

for this investigation were based on a simple two-node truss element.

This element is similar to the standard element used in the nonlinear

finite element program SEADYN (Webster and Palo, 1982), which is used

for much of the structural analysis of ocean cable systems in the Navy.

The element's implementation, in this study, allows for compression

forces to develop. This decision was a matter of expediency. A true

cable element, perhaps, should provide for tension only behavior.

In the following, the linear elastic and geometric stiffness

matrices for the truss element are developed and superimposed to get the

nonlinear element stiffness matrix. The development follows that of

Argyris and Scharpf (1972), and the notation follows that of Gallagher

(1975).

*Sometimes an approximate Phase I solution is nonetheless sufficient
as a starting configuration for the Phase II solution particularly
when the stresses of the latter are substantially greater than the
stresses of the former. However, accurate knowledge of the initial
configuration and prestress is often important.
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Cable Element Linear Elastic Stiffness Matrix Development

The column matrices xt and xt+At denote the positions of the cable

element in the t configuration and the t+At configuration, respectively,

as shown in Figure 1. They are defined as follows,

t t t t t t t JT
21 [X il' l' zl' x2' Y2. z 2

t+At t+At t+At t+At t+At t+At t+AtIT
x [x1 Yi , zl x2  ' Y2  z2  J

They are related by the displacement matrix A as follows,

t+At tx = x +A

where A = ], AT

= Lu , vl, wl, u2, v2 , w2 JT

The ui, vi, and wi are Cartesian components of the nodal point displace-

ment vectors AI and A2 (see Figure 1) in the xyz system. That is,

A ui+

A = ui + VlJ + wlk

2 = 21 + v2J + w2k

The nodal point displacement components in the local element

coordinate system x' are u' and u'. These displacements are axial and1 2
contribute directly to the axial deformation of the cable element. They

are related to the global displacement components ui, vi, and w i, shown

in Figure 2, as follows,

u A1  c
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configuration t 2 configuration t+At

S t

AA

I 'V

YXl

x,u

Figure 1. Displacement of a cable element.

z,v w 2Xu

22

yv

X,u

Figure 2. Global and local coordinate systems.
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Am

u - 2  • c :

where i is a unit vector along this x'-axis. That is,

c = x + IxyJ + zxIzk

where AX x txy , and t are the .direction cosines of the cable element

axis x' with respect to the x, y, and z axes, respectively. The direction

cosines are computed as follows,

- x2 - xI -

xx L

Y2 Yl

xy L

Sz2 z1

x z L

where L is the (current, t+At) length of the element and is defined by:

L2 -- (x2 " X )2  + (Y2 _ y l
)2  + (z2  - z l)

2

Thus, the global to local transformation of displacements is described

by,

u 1

v 1

t I I x 0 0 0:~ o o y' x' ' u1
{UW 0 [ 0 9 x Ix -x- y x -2

v 
2

w 2

or, 
j

The local and global nodal point forces are depicted in Figure 3. In

matrix form, they are, respectively,
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z ,w

F 2x

L' ly

lx y,v

x'u

Figure 3. Global and local nodal forces.

T 
oT

and,

(E)T F lx, Fly, Flz' F2x , Fy' 2z] T

The transformation of nodal point forces from the local x'-axis to the

global x, y, and z axes, is obtained as follows. The invariance of work

under coordinate transformation requires that,

I(E,)T 1 T

It follows that,

(E')T r - FTA

and since A is arbitrary,

FT . (.)T r



F - rT F'

or,

Flx Ix x  0

Fly Ix y 0

F2y 0 x, [Y

F2z 0 A z

Thus, the force transformation is implied by the displacement trans-

format ion.

In vector notation the force transformation is,

F' = Flx i + Fly J + Flz k

F1 = F2x I + F2  J + F2  k

since, for example,

Flx = axIx F1

M F' " i

The nodal point forces components in the global system are the

conventional rectangular components of the nodal point force vector in

the local system. It is interesting to note that the same relationship

is not true for the nodal point displacement transformation.

The force-displacement relationship in the local coordinate system

is,

F' =k A'

where AE~ [_I -11

16
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and is called the element elastic stiffness matrix. The symbols A and E

denote the cable cross section area and Young's modulus, respectively,

and L denotes the unstrained element length.

The element elastic stiffness matrix referred to the global system

is denoted by kE , and relates the forces and displacements in th xyz

system as follows

F = k

This stiffness matrix is defined by the condition that the work associ-

ated with either conservative force F or F'is invariant under the

coordinate axis transformation. Thus,

1 (F)TA = 1 FT A
2 ~. 2

It follows that,

(kI AF)Tr - (k E A)TA

kEA = rT kEA, - rTE r A

and, since A is arbitrary,

--, kT r

This is a congruent transformation, and therefore, since k is a sym-

metric matrix, the matrix kE is also a symmetric matrix.

If the transformation matrix r is partitioned as follows,

it can be shown that the transformed stiffness matrix Is:

I Ti

17



where the outer product FT is the symetric, 3 by 3 matrix,

-*I-* - /,~y, -, -1. xy',
2
x x x x xy Xx xz

ftx'txtx  x x x z

Geometric Stiffness Matrix Development

The following development brings in the contribution of a cable's

prestress force to the cable element's total stiffness. It provides the

resistance to lateral forces externally applied to a cable.

The displacement vectors A1 and A2 may be resolved into components

parallel and perpendicular to the member axis x', as follows. For node

i (I=1,2),

Li =i I  + Ai

par per

Now, 

A pa
=q

par

In matrix form this can be shown to expand to:

[ t, 2 2, 2t I
Aix 2x'x , x y xxxz u

.A I t2,2, 2 2,21,11 vi
iy x y xx x Y Xy xz i

Ai a I Ix' yx'x t , 2 lvi
-par X z X X xzx y xz

or,

Aipar  = rT rl A

The perpendicular component is then:

per par

18



or, in matrix form:

per par

- Ai -r T rA-

T

- T

where I is the 3 by 3 identity matrix.

A measure of the rotation of the cable element is given by the

difference in the perpendicular components as follows,

I =A 2  -A 1

2 1
per per

In matrix form this is expressed as:

2 -A,
per per

= ( - T )(Q2  I A1)

Perpendicular forces fG at each node point are developed to

equilibrate the couple formed during the member rotation by the axial

force f, which is the prestress force existing in the member, as shown

in Figure 4. These nodal point forces are computed in terms of the

axial force and member rotation as follows,

f f and = f

G1 L G2 Too 0

In matrix notation this becomes:

19



1 2

fG2

Figure 4. Formation of geometric forces.

f[(I r -Q
LI T D Q rT r A I-

or,

-G -0-A

The matrix kG is known as the geometric stiffness matrix. It is

completely independent of the element's elastic properties, and depends

only on the element's geometrical property Lo.

Total Cable Element Stiffness Matrix

The total cable element stiffness is obtained from:

F = F + f =k A +k A =kA
- 'E ZG -E- -G --

Thus, the total stiffness matrix k is the sum of the elastic and geo-

metric stiffness matrices. It can be written in a computationally

organized manner as follows: 20



k = k + k -
- E 'Gk k

Here, the submatrix k' is defined as:

k' - AE - f r.T l  f
~ o o

The elements of k' are listed in Table 1.

Table 1. Coefficients of Subuatrix k'.

a, Z 1+b a, I I a, 9 Z
x x x x x y x x x~z

ae, s i b at I,

symmetric a
x z

where .AE.-f and bLL
0 0

When a restraint against rigid body translation of the cable

element, such as pinning one end, is imposed, it can be shown that,

det k =det ME + 0)0Ofor f 0

and,

det k det kE = 0 for f = 0

That is, the pinned element will resist rotation only when the prestress

force f is nonzero.

FULL NEWTON AND MODIFIED NEWTON SOLUTION METHODS

Standard approaches in nonlinear finite element technology consider

the formation and solution of a nonlinear system of discrete finite

21
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element equations, i.e., an algebraic system. The form of these equa-

tions is the same for all nonlinear kinematic structures that have been

spatially subdivided by the displacement-based finite element method.

The approach is viable for both phases of the two-phase cable problem.

There are no differences in the form of the equations that would arise

from the use of cable finite elements compared to other finite elements

in non-cable problems, i.e., continuum or structural elements. The

formal derivation of these equations can be lengthy and the reader is,

therefore, deferred to standard treatments such as the one by Bathe

(1982). Only a summary is given here to introduce the status quo

solution methods, the full and modified Newton methods.

The derivation of the discrete nonlinear finite element equations

is ordinarily based on the principle of virtual work applied to non-

linear geometric bodies that undergo large displacements, large rota-

tions, and small strains. Displacements and rotations of cables or

cable segments are large, but cable strains are assumed small with no

change in cable cross-sectional area. Typically, a material formulation

is used, which may be either a total Lagrangian or an updated Lagrangian

formulation. In this method the motion of the cable is followed from

its initial to its final configuration in an incremental fashion. In

the total Lagrangian formulation, all variables corresponding to the

deformed configuration are referred to the initial configuration. In

the updated Lagrangian formulation, the variables are referred to the

most previously calculated configuration. Bathe (1982) states that the

two formulations are equivalently comprehensive in their inclusion of

nonlinear effects, and will yield identical results if consistently

carried out. Preference for either formulation is based on implemen-

tation and computational considerations.

The objective in nonlinear analysis of cable systems is to first

find the equilibrium configuration corresponding to the applied load.

Host often an incremental approach to the solution is used wherein the

equilibrium state is established via a solution of the nonlinear equa-

tion system for a succession of applied load increments, until finally

the total load has been applied to the cable system. For any given

configuration the equilibrium equations are represented as:

22



() = F e- F = 0
eI

where: F = vector of external nodal point forces due to the applied
e loads corresponding to the present configuration

F, = vector of internal nodal point forces due to the element
stresses corresponding to the present configuration

x = vector of displacement variables constituting the system
configuration

These are the discrete nonlinear finite element equations. The

displacement vector, x, constitutes the solution to the equilibrium

configuration when the residual force vector, F(x), is zero. Satisfying

these equations is the objective of many different nonlinear finite

element solution algorithms.

Full Newton Method

We have said that application of the finite element method to any

nonlinear structure, and further application of a time-stepping pro-

cedure in the case of dynamic problems, leads to a set of nonlinear

algebraic equations for each discrete time. These discrete nonlinear

equations are represented by:

EW() = 2

If we write a first order Taylor expansion we obtain the equation

E(k+l) Z E() + F'(xk) dk

where k is the iterate number, xk is a previously computed displacement

vector, dk is a change in xk called the step direction and is an unknown,

and F' is the Jacobian (or tangent stiffness matrix) of F whose elements

are defined by:

Fij F,
F' =

ij ax~

In one-dimension, these quantities appear as in Figure 5.
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F(x)

F(xk) -

slope = F'(Xk)

Idk

Xk xk+I x

Figure 5. The tangent stiffness - Newton's Method.

Newton's method consists of setting the Taylor expansion to zero,

solving for dk in the equation:

V'. 
k = _ d -k

and setting:

Xk+ xk + dk

to obtain the updated configuration.

In practice it is often desirable to modify the last formula as

follows

Xk+l = Bk + k dk

where sk is a scalar used to enhance the stability of the algorithm.

The value of sk is determined from a line search. That is, it is

determined in such a way as to minimize the residual, F(Xk). A common

line search procedure is to solve the equation:

24



Ti
F( k S dk)= 0

for sk '

Algorithm 1 is a procedural description of the full Newton method

for solving a system of discrete nonlinear finite element equations.

Algorithm 1. The Full Newton Algorithm.

0. Set k + 0 and initialize x and k"0 max

1. Compute F(

2. Compute the tangent stiffness matrix F(Zk)

3. Solve V'(Zk) dk = - E(xk) for dk

4. Compute sk from a line search

5. Update Xk+ 1 4- xk + S

6. Test for convergence or whether k = kmax

7. Terminate iteration or increment k and repeat
steps (1) through (7)

8. Output xk+l and stop

Newton's algorithm has at least two very desirable properties:

1. Any xk in the domain of convergence results in an xk+1 that is

also in the domain. Consequently, the method is stable and

convergent once any iterate is in the domain of convergence.

2. The method possesses at least super-linear convergence and

often quadratic convergence.

On the negative side, it has two disadvantages:

1. If the domain of convergence is small, then a very good initial

approximation, x0, to the solution vector is required.
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2. Evaluations of the tangent stiffness matrix F'(xk) and its

factorization (step 3 in Algorithm 1) are very costly in large

finite element problems.

The requirement of a good initial guess may be mitigated by using

line searches and, for quasi-static problems, by using an incremental

evolution of the load application. In the next method, the possibility

of reducing the computational effort in factorization of the tangent

stiffness matrix is addressed.

Modified Newton Method

For large systems of equations, the main cost in Newton's method is

the formation and factorization of the tangent stiffness matrix. To

mitigate this cost, it is often advisable to use a previously computed

and factored tangent stiffness matrix as an approximation of the current

tangent stiffness matrix. This is indicated in step (2) of Algorithm 2

where F'(xi) represents a previously formed tangent stiffness matrix,

and Bk represents its factored form. Such a method is called a modified

Newton method.

Algorithm 2. The Modified Newton Algorithm

0. Set k + 0 and initialize x and k

"0 max

1. Compute F(xk)

2. Solve B k = -xk)' where k = '(3i ) ;

i < k

3. Compute sk from a line search

4. UpdateX+ 1  = s

5. Test for convergence or whether k = kmax

6. Terminate the iteration or increment k and
repeat steps (1) through (6)

7. Output xk+l and stop
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For each loop through Algorithm 2 when the value of i in step (2)

remains unchanged, the 0(n 3) steps required for factoring the tangent

stiffness matrix, are avoided. However, these savings are achieved at

the expense of a less satisfactory convergence rate. The modified

Newton method only converges linearly, as indicated by the inequality:

where x* denotes the true solution vector, and a is a scalar between 0

and 1.

After a certain number, say p, of iterations through the modified

Newton algorithm, the value of i in step (2) may be incremented, and a

new tangent stiffness matrix must then be factored. However, the value

of p is very problem-dependent and depends on the degree of nonlinearity

of the cable system. It is reasonable to assume that p will be smallest

for the more highly nonlinear cable systems. But, as the tautness and

stiffness of the cable system increases, the value of p may be allowed

to increase to reduce computational effort.

DERIVATION OF DYNAMIC RELAXATION INTEGRATION FORMIAS

The system of N static nonlinear equations to be solved for the

unknown, N-dimensional displacement vector x is, as before,

Fi(4) =f Fe

where F I(x) is the nonlinear internal force vector and F. is the applied

external force vector.

The dynamic relaxation solution method begins by converting the

static problem to a structural dynamics problem in terms of a pseudo

time, t. Thus,

*" IM + C x + Fi) = Fe

is the pseudo equation of motion to be solved for x. Here H and C are,

respectively, artificial mass and damping matrices which are defined

arbitrarily as:
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=

C= cI

where I is the .i Identity matrix, and the scalars p and c are the

artificial mass sno amping parameters. These parameters will sub-

sequently be chosen to control stability and convergence of the

integration procedure.

Temporal integration is accomplished by discretizing the dynamic

equations using the following central difference approximation formulas,

which are also illustrated in Figure 6.

-n-1/2 1 n n-1
h (Rn x

and,

n 1 .n+1/2 *n-1/2

where h is the time step size. Also, averaging the discrete velocities

at n+l/2 and n-l/2 yields:

•n = 1 (in+1/2 + *n-1/2)

Substituting these formulas into the pseudo dynamic equations of motion

yields a two-term recursion formula for updating the velocity:

*n+1/2 2 - ch/p n-l/2 - 2 h/p r n
(2 + ch/p) - 2 + ch/p) -

where rn is the residual force vector and is defined as the difference

between the internal and external force vectors,

n = F(xn) - e(tn )

The displacement is updated by the formula:

n+l n nl/

X = xn + h
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h

t
n-1/2 n+1/2

(nI (n)-*xn I 1 n+1/2 k.n-1/2

Figure 6. Central difference approximation.
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which is obtained from the difference formula for velocity with n+l

replacing n. Combining these two updated formulas and using the dif-

ference equation for in-1/2 (to eliminate Xn-/ 2 ) yields a single,

three-term recursion updated formula (see Papadrakakis, 1982) for the

displacement vector:

n+1 = n2 ch/p n - + ch/p) r1 2hnp
2 + c2 +ch/p - 2+ ch/p~

This is the primary formula for the dynamic relaxation method. It does
-I

not apply for n = 0, for the displacement at x is unknown. Therefore,

an additional formula is needed to start the integration.

The following initial conditions for displacement and velocity

0
X(0) = x

i(O = i

are arbitrary since this is a pseudo dynamic formulation. We may, for

example, choose:

.0 =
0

and retain x as arbitrary. Next we use both the central difference and-ll
the average velocity formula with n = 0 to determine x-1 as follows

-L = X0  -12 = +12= - -h = +h

Then we may use the central difference formula (with n = 1) for 1/2 and

get:

-1 =1

Substituting this into the primary updated formula for displacement with

n = 0, we arrive at:

1 0  h2  0
x x -- r

This is the desired starting formula for the dynamic relaxation method.

It is observed that this formula does not quite agree with the starting

formula given by Papadrakakis (1981), which is:
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1 0 h 0 P1

unless h = 1. It does, however, agree with the starting formula given

by Underwood (1983). However, the primary updated formula does agree

with those given by both the above authors.

It should be emphasized that the calculation of the residual rn in

the dynamic relaxation method is computationally straightforward. All

that is required is to calculate and sum the unbalanced forces existing

at each node point in the cable system at the known, current configura-

tion xn. The internal force calculation for each element is simply based

on the linear portion of the element stiffness matrix. It is not necessary

to use the nonlinear element stiffness matrix. So the residual force

vector is calculated on the local level. It is not necessary to compute

the tangent stiffness matrix of the system at the current configuration
n n

for the purpose of computing the internal force as the product K(n )xn
as is necessary for the Newton-based procedures.

A Generaliztion of the Method

A family of dynamic relaxation schemes may be derived by precondi-

tioning the system of nonlinear equilibrium equations prior to their

solution by dynamic relaxation. Papadrakakis (1986) demonstrates the

preconditioned dynamic relaxation scheme for linear systems of equations.

Here, we apply the same preconditioning scheme to the linearized form of

the nonlinear system,

K(,n) n e n)

Premultiplying this system with the inverse of the preconditioning

matrix W-, we get*:

-I n -T XT n = WI F(,n)

*The superscript -T means the inverse of the transpose of the matrix.
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Thus, the general form of the residual, rn, in the dynamic relaxation

method may be written:

n- n Tn n
r = W- [(n) w-T WT x F (tn)I-e

Alternative, preconditioning matrices may be defined as:

a. W = I. This is the straight dynamic relaxation scheme which

has been presented above.

b. W = D1 /2 . Here D is a diagonal matrix composed of the entries

on the main diagonal of the tangent stiffness matrix. This

method is also called diagonal scaling since the original

linearized system is scaled such that an equivalent system

results in which the entries on the main diagonal of the co-

efficient matrix, formed from the tri-product matrix, W K(X )

-T, are unity. Physically, this method is equivalent to

assuming that the mass and damping matrices in the dynamic

relaxation process are proportional to the diagonal stiffness

matrix.

c. W = (D - W CL) D -1/2. This preconditioning matrix assumes the

tangent stiffness matrix can be factored as:

n = - -

where -CL and -C are the strictly lower and upper triangular

matrices of K. The scalar w is an acceleration parameter,

which is usually set to unity.

lMRIVATION OF OPTIMAL ITRRATION PARANEFRS

Since the artificial inertia and damping forces appearing in the

pseudo equations of motion are arbitrary, we are at liberty to choose

any values for the parameters p and c. The objective here is to develop

formulas for these parameters so that they may be adaptively controlled

32
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(during the solution) in such a way as to promote optimum stability and

convergence for the dynamic relaxation iterative procedure. We assume

that any difficulty in achieving stability and convergence would be due

to the numerically ill-conditioned stiffness matrix K( ). Such ill-

conditioning may arise for valid physical reasons, such as when cables

approach slack conditions.

The Internal restoring force term may be represented as*:

Fi() = (2) 3

Thus, whatever the desired optimizing formulas are, it makes sense that

they should reflect the condition of the stiffness matrix during the

solution process.

To examine systematically the stability and convergence of the

method, Lynch (1968) transformed the iterative process into a standard

eigenvalue problem for the error vector:

n = xn

where x denotes the exact solution for the displacement vector. Fol-

lowing this approach, the relationship between successive error vectors

is given by:

n+l T BIn n-1

where: 2 ch/p +

2 + ch/p

*Recall, however, that the internal restoring force is actually calcu-
lated independently of this expression.
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a 2 h2/p '

2 + ch/p

a= - 1

The matrix B is the preconditioned tangent stiffness matrix,

B= K- n) n -T

Letting the rate at which the error vector decays be denoted by X,

then*:

n+l n

We wish to investigate what influences the decay rate 1. So an

equation for X is obtained by substituting the above definition into

Lynch's equation. We can then obtain:

Now, the standard eigenvalue problem for any eigenvalue X B of the matrix

B is written as:

( + B)e =

If we identify this equation with the one above it, we obtain:

2XD _ XD 0 + a
DR DR P + B = 0

DR

Here we glimpse that the decay rate XDR is related to an eigenvalue XB

of the stiffness matrix (scaled). This is the type of relationship that

was anticipated, i.e., the stiffness matrix conditioning is tracked by

monitoring an eigenvalue.

*It's apparently an assumption that the iteration process converges
monitonically, and that the decay rate is a constant, scalar multiplier
of the previous error vector.
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Solving for XDR we obtain the quadratic equation:

2 - - + a = 0
XDR XB XDR

So, for each of the N eigenvalues of B there are two solutions for XDR'

DR (B XB) ± 2  l XB) - 4

In the first case, the roots of the quadratic are complex when:

4 a > ( B ) 2

The modulus of the decay rate IxDRI can be found and is:

2- ch/p

'DRI 2 + ch/p

The decay rate modulus is seen to be independent of the eigenvalue X B in

the case of complex roots.

In the second case, the roots are real and equal when:

4 = ( - B)2

The roots are:

DR 2 + chp 2 B

For this case, we also find that the square of the convergence parameter

ch/p has the following relationship with XB

2 B h2  B h2
(clx) 2 B h( 4 - Bh)

PP P

In the third case, the roots are real and unequal when:

4 a < ( T 2B2
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The larger of the two roots is found to be:

h2 [( XB) ]X'2h 44X ,h 2  2_h_
DR 2 + ch/p ] 2 p

From the definition of X, we see that it is important to promote

the smallest value possible for this parameter. Comparing the formulas

for X DR in the three cases above, we find that the smallest value will

occur for the case of equal roots. In Figure 7, we graph the formula
2

for XDR for this case against the parameter h XB /p while holding con-
stant the parameter chip. We also note that h 2XB/p 4, since this

would otherwise lead to imaginary values for the parameter ch/p, which

has been identified as real in the dynamic relaxation formulation. Thus

whatever the N values of XB are, we must choose h2/p so that the range

0 < -- X < 4
P B

is maintained.

At this point we introduce the prospect of calculating the minimum

and maximum eigenvalues, XBmax and X min' of the stiffness matrix B. We

have no desire to calculate the entire spectrum, for that would be com-

putationally prohibitive for the following reasons. First, the value of

N may be quite large. Secondly, the stiffness matrix B is nonlinear (in

the displacement vector x) and can be expected to change dramatically at

times during the dynamic relaxation iterative procedure. Its eigenvalue

spectrum will shift accordingly. We, therefore, settle for the prospect

of calculating only the minimum and maximum eigenvalues in a reasonably

expeditious manner.

Referring to Figure 7, the best value of XDR occurs when h 2XB/p = 2.

From this observation, it is reasoned that optimal values for the conver-

gence parameter h 2/p be calculated by the formula:

(4 4
opt Bmax Bmin
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2+ch/P~
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h 2XBmin h2Bmax

P P

Figure 7. Behavior of decay rate and eigenvalues.

That is, this convergence parameter is calculated so that the average of

the two abscissa values that are based on the minimum and maximum eigen-

values of the stiffness matrix, shall equal two. Accordingly, this formula

gives values for the convergence parameter that should correspond to a

minimum value for the decay rate X DR' the condition that we are trying

to promote.

Also, from the second case we recall that:

( h ) 2  _ X BPh 
2  2

P P,

Substituting the optimal expressions for the parameter h 2/p in this

equation we are led to:

ch f 4 X B mx BP X Bmax +  EBmin VB(Bm + XBmin - B

Whether or not we let X B = XBmax or X B X Bmin in this expression, we

will arrive at the very same result for the optimal expression for the

parameter ch/p,
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opt Bmax Bmin Bmax Bmin

The two formulas for (h2and (ch/p) opt govern the values for

the artificial mass and damping parameters p and c, respectively, for

the dynamic relaxation procedure. They reflect the state of the stiff-

ness matrix B through their use of the maximum and minimum eigenvalues

of that matrix. Further, their derivation is based on a systematic

analysis of stability and convergence of the dynamic relaxation pro-

cedure. When these two optimal formulas are used, the range of the

decay rate will be:

0 X DR

which ensures stability of the iteration process. Also, an optimum

convergence rate is encouraged since smaller values of XDR (within

this range) are promoted by using these formulas.

Estimating the Maximum and Minimum Eigenvalues

The calculation methods for the maximum and minimum eigenvalues of

the stiffness matrix (scaled) B are described here. Because these values

are likely to vary during the solution process and their calculation

repeated, and because knowing eigenvalues exactly is not required to

maintain stability of the process, we may use approximate calculation

methods.

To ensure stability we need only ensure that the inequality

* >X
DR Bmax

is maintained during iteration with the dynamic relaxation method. Thus,

if we are able to calculate an upper bound for the maximum eigenvalue,
2then we are assured that when its product with the term h /p is taken to

be less than four, the product of X with will also be less than

Bmax/pwlaloblestnfour.

We have available the Gerschgorin theorem to calculate an upper

bound of the maximum eigenvalue of a square matrix. Applying it, we can

write:
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N

IBmaxI < P IB i j l

where the Bij are the entries in the scaled stiffness matrix B. This

states that the maximum over all rows of B of the sum of the entries
(their absolute values) in each row is an upper bound of XBmax" The

implementation of this simple inequality must involve an algorithm that

recognizes the matrix B is never formed explicitly in the dynamic relax-

ation method.

A strength of the dynamic relaxation procedure is that the global

stiffness matrix B need never be formed explicitly, because calculating

the residual r involves only carrying out the product of the stiffness

matrix and the displacement vector. This can be done at the local level,

and therefore having to assemble the stiffness matrix is avoidable in

the dynamic relaxation method. To do so is desirable and results in a

storage savings advantage over competing direct solution methods.

Calculation of the minimum eigenvalue is less critical than the

calculation of the maximum eigenvalue for it cannot directly affect the

stability of the iteration process. Exact methods for its calculation

are not required either, and neither are bounds necessary for its esti-

mation. The minimum eigenvalue must only lie in the range

0 X Bmin X Bmax

Its value, along with that for the maximum eigenvalue, does affect the

rate of convergence of the solution. Numerical experiments have demon-

strated that poor estimates can adversely affect convergence, though

they cannot directly cause a solution to blow up. Good estimates of the

minimum elgenvalue should therefore be sought.

Two formulas for approximating the minimum eigenvalue are presented.

The first is recommended by Lynch (1968) and Papadrakakis (1981) and the

second is new. Any admissible value for X Bmin may be used at the start

of the dynamic relaxation solution process. It is then assumed that

while the solution is in progress, the following quotient approximately

describes the decay rate, XDR

39



+1 - n
- 11 DR

Further, it is assumed that this quotient becomes constant within some

user-defined tolerance, after a sufficient number of iterations have

passed. When that condition occurs it is assumed that the dominant

eigenvalue of the stiffness matrix should correspond to the minimum

eigenvalue. The first formula comes from using the previously given

quadratic equation in XDR and solving for XBmin, i.e.,

2

- _(XDR X +
XBmin DR XD R I

DR

The quotient given for XDR' is used in this formula to estimate XBmin.

Then XBmin can be used to update the optimal convergence parameters

(h2/p)opt and (ch/p) opt*

The second formula is derived based on the further observation that

it is the case of equal roots (in the quadratic equation solution) from

which we have derived the formulas for the optimal convergence parameters.

Therefore it is more consistent to use the formula which relates XDR and

XBmin from that case. Thus, the second formula for calculating the min-

imum eigenvalue is:

XBmin 2 1 [

Once again the solution vector quotient is used for determining XDR in

this formula.

Unfortunately, in either formula, nonpositive values for XBmin are

possible and experience has shown that they will occur. A vigilance

must be maintained for this condition and corrective action taken im-

mediately. From the above formula, this condition seems to be avoided

so long as:

n+l n

DR ~ llxn - X n l 2 + ch/p
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A procedural description of the automated dynamic relaxation solution

method is given by Algorithm 3.

Algorithm 3. Automated Dynamic Relaxation

Given h = I andF b-e 2p , n
-ext' 2p ' p max

0. Initialize n *-O, x 4- O, F int 0

1. 0 F 0
int "ext

2. x 1-X r0 and x-1 - X
2p~

3. x (.....L4... n -(2-c~h/) xnl-1 (2hLL2a./. r n
n 2+ch/p - 2+ch/p - 2+ch/p

n+l1
4. If convergence O.K. then output Z and stop.

5. If n = nmax then output error message and stop.

6. n4-n+l
7 n n-1 nd n-I n-2

8. Calculate Fn
in t

9. rn 4-F n -F

- -mt -ext

10. If convergence rate O.K. then go to step 3.

11. Estimate upper bound of maximum elgenvalue and
estimate minimum eigenvalue.

12. Update parameters ch/p and h2/p.

13. Go to step 3.
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RSULTS FROMN HUHRICAL XPERIHENTS

The three solution algorithms described in this report were tested

in the framework of small, two-dimensional, nonlinear finite element

computer programs for the nonlinear static analysis of planar cables.

These programs were developed and written specifically for that purpose.

There was an interest in keeping the programs as similar as possible.

However, the ADR algorithm's implementation was more lengthy. The imple-

mentations were carried out in UCSD Pascal on a Stride Micro 440 using

the p-System operating system.

The results for the modified Newton algorithm were so unsatisfactory

over the range of test problems that they are omitted. This algorithm

does have attributes but robustness relative to highly nonlinear problems

is not one of them.

Robustness Behavior

The set of test problems was primarily designed to test an algorithm's

ability to seek the correct static solution while starting from an initial

cable configuration that is arbitrarily prescribed. Thus, the robustness

of the algorithm is addressed in this set of test problems by deliberately

specifying onerous initial configurations. In all cases, the unstrained

cable length, which in practical engineering problems is generally a

known quantity, is treated as prescribed input data. This information

along with prescribed external loads and/or cable span lengths are used

to compute the static equilibrium configuration with its corresponding

state of prestress. These are all examples of Phase I tensioned struc-

ture problems.

There were 14 cable test problems, which were grouped in the

following four subclasses.
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Iar
1. Fixed-Span Suspended Cable

2. Cable Snap-Through

3. Mooring Cable

4. Varying-Span Suspended Cable

These problem classes and their corresponding solutions, and the perfor-

mance of the algorithms are each described separately.

Fixed-Span Suspended Cable Problem

This test problem consists of a cable suspended between two supports

and acted on by lateral, unit forces at each node. The rigidity of the

cables, EA, is 1000. The unstrained length of the cable is 100 units,

and the span is 60 units. The cable length is uniformly divided into 10

elements. Table 2 compares the convergence of the full Newton and ADR

algorithms for four initial configuration cases. The results indicate

that convergence to the correct solution was achieved successfully by

both algorithms for all cases except the third, the kinked initial con-

figuration case. This case consists of an initial configuration where

all the elements lie on a straight line across the span, and the two

inner most elements are exactly colinear (though they are shown parallel)

with and overlap adjacent elements.

The expected equilibrium solution for this problem is presented in

Figure 8. Also shown is the unexpected equilibrium position found by

the full Newton algorithm for certain prescribed initial prestress forces.

In this solution the two overlapped elements are sustaining compressive

forces. Perhaps the full Newton algorithm would have found the expected

solution if there had been provision for tension-only element behavior.

However, the ADR algorithm required no such provision, and further, is

independent of initial prestress force. It, thereby, exhibits greater

robustness.
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Table 2. Ntinrical Rtsults of Fixed-Span Suspended Cable

Algorithms
Case Initial___________ _____

No. Configuration Full D
_________________________NewtonAD

I Rectangle

Converged Converged

2 Triangle

Converged Converged

41

L3
3 Kink

Can converge Converged
to unexpected
solution

(all elements are colinear)

4 Saw tooth

IvConverged Converged
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actual ly colinear

initial configuration

S[

unexpected solution

expcC ted
solutionl

Figure 8. Expected and unexpected equilibrium configuration

for kinked cable.

Cable Snap-Through Problem

This test problem consists of a six-element suspended cable with an

unstrained length of 60 units. The cable is considered weightless with

an EA value of 1000, and subjected to concentrated horizontal and vertical

forces as shown in Table 3. The end support that is subjected to the

horizontal force is free to move in the horizontal direction beginning

from either of two prescribed initial configurations until a static

equilibrium configuration is reached. In the second case, the six-cable

elements are initially coiled on top of one another such that their nodes

possess exactly the same initial coordinate values. As the solution

algorithm seeks equilibrium, the cable tends to uncoil and snap through

from left to right.
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Table 3. Numerical Results -Cable Snap Through

Algorithms
Case Initial_________________
No. Configuration Full D

NewtonAD

I Triangle

/0 Converged Converged
4 Z5 with poor

accuracy

2

2 Coil

Can converge Converged
to unexpected
solution

27;

(all elements are colinear)
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The ADR algorithm converges to the expected equilibrium solution,

which is shown in Figure 9a, from either initial configuration. How-

ever, in the first case, the final calculated span was short by 9 per-

cent. This is an anomalous result for in all other test problems no

such inaccuracy occurred with the ADR algorithm. The accuracy of the

full Newton algorithm was good in this case. In the second case, how-

ever, the full Newton algorithm did not always converge to the expected

solution depending on the value of the initial prestress force pre-

scribed. The ADR algorithm is independent of this quantity, and con-

verged to the expected solution (accurately). Two, unexpected, alterna-

tive equilibrium states found by the full Newton algorithm are shown in

Figures 9b and 9c. Once again these states include elements sustaining

compression forces.

Mooring Cable Problem

This test problem simulates a highly i'ealized, single leg mooring

cable, which is a common structure in ocean engineering. Five different

initial configuration cases were designed as indicated in Table 4. Cases

1 through 4 all possess an inverted L-shaped initial configuration but

may differ in the specification of current forces applied to the cable

or in the cable elastic modulus. In these cases, the unstrained cable

length is 900 feet and is uniformly subdivided into six elements. Case 5

possesses a vertical initial configuration and is referred to as a taut

system. In this case, the unstrained cable length is 600 feet. In all

cases the lower support is fixed (anchored), and the upper support is

constrained to slide horizontally along the surface under the action of

constant current forces and a 500-pound surface force.

Table 4 indicates that for all five cases, both the full Newton and

ADR algorithms converged to the expected equilibrium solutions. The

expected solutions are shown in Figure 10. Figure 10a shows the equili-

brium solutions computed for cases 1 through 4. The prescribed cable
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45 0

42

(a) expected

c 1peso

Comppression

2

(b) unexpeczed

2

compressioncopes n

(c) unexpected

Figure 9. Expected and unexpected equilibrium configurations
for coiled cable.
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Table 4. Numerical Results M ooring Cable

Algorithms
Case Initial________________

No. Configuration Full ADR
Newton

1-4 Inverted L-shape

surface
force, F

4Converged Converged
current
forces, F

150 (typ)

5 Taut

surface

focFs Converged Converged

current
forces, F

100) (typ)
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_______100' 200' 300t 400' 500' 600'
__________F -- ~------m -- I - - ----- -I---- O+ O-0O-

F c F Cs O )

00

F .0

F 0Case F F EA

0.//Oz(lb) (ib) (psi)

01 5000 2,0

2 500 50 2,000

F 3 500 100 20,000
C 4 500 100 2,000

(a) Cases 1 through 4.

-~ F
S

-F0
C

4-/F = 5001Ib/ S

F = 50 lb

oEA = 2,000

(b) Case 5.

Figure 10. Equilibrium configurations for a mooring cable.

50



moduli are soft, so large strains*, as well as, large displacements are

developed. The surface node point, for example, has moved more than

600 feet from its initial position in Case 2. Figure lOb is the computed

solution for the taut cable, Case 5.

It was clear from these results that the more taut the cable sys-

tem, the easier it was for the algorithms to converge upon the equilib-

rium solution. In this respect, these were well behaved problems and

consequently the solution algorithms were not really challenged.

Varying-Span Suspended Cable Problem

This test problem consists of a horizontally suspended cable with

one of two supports free to slide horizontally. The cable is acted upon

by uniform lateral forces and a concentrated, horizontal force both of

which cause one support to slide until the system reaches equilibrium.

The unstrained cable length is 200 feet, and it is uniformly subdivided

into 10 elements. This test problem was used by Webster (1979) in a

similar study of solution algorithms for ocean cable systems.

The three initial configuration cases studied are shown in Table 5.

Also given in the table are the problem parameters including the cable

rigidity, EA. In the first two cases, the cable is initially aligned

exactly horizontally along the span. Case 1 is labeled taut because its

initial configuration is such that the cable will remain in tension

throughout the solution process. Case 2 is labeled slack because during

the solution the cable must pass from a compression state to a state of

full tension. In Case 3, a completely sagged cable is represented where-

in all elements initially lie along a common vertical line. However,

the cable should remain in tension throughout the solution process.

The ADR algorithm converged to the expected equilibrium solution in

all three cases. The expected solution is shown in Figure 11. However,

in Case 2, the full Newton algorithm did not always converge to this

*The computer programs used do not possess a large strain formulation
in which the cross sectional area of the cable becomes variable. The
cross-sections remain constant in the present programs, and they are
only applicable to small strain problems.
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Table 5. Numerical Results -Varying-Span Suspended Cable

Algorithms
Case Initial_________________
No. Configuration Full D

Newton D

1 Taut

L

'4;; ;;; ~Converged Converged

2 Slack

Can converge Converged
H--0110- G to unexpected

~ solution

w

3 Sag

-~H

(all elements T Converged Converged
are colinear) L/2

L = 200 ft
H = 5.77 lb
w = 0.1 lb/ft
EA = 1 x 103 lb
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solution. Its behavior, in this case, was like that already discussed

for the cable snap-through problem. Whether the expected solution was

found or not depended on the value of the prescribed prestress force.

Webster (1979) showed that the full Newton algorithm failed for this

test case. Here, it was learned that it may or may not fail. In

general, however, these results are in agreement with those of Webster's

concerning the unrealibility of the full Newton algorithm for this class

of problems.

The ADR algorithm is more robust than the full Newton algorithm in

seeking the expected equilibrium solution in the varying-span suspended

cable problem. Once again, this behavior is correlated with whether or

not a slack cable configuration arises in the solution process. Also

the results from Cases 1 and 3 in this test problem show that the ability

of either algorithm to converge is not dependent on the degree of cable

sag present in the initial configuration. Successful convergence was

achieved by either algorithm for no initial cable sag in Case 1, and for

maximum cable sag in Case 3.

Recall that cable slackness is a mechanical condition, and that

cable sag is a geometrical condition. This test problem demonstrates

that it does matter whether or not cable slackness is present, but it

does not matter to what degree cable sag is present.

Performance Behavior

Though the main goal in this study centers on the robustness

behavior of the algorithms, their performance behavior, i.e., their

speed of convergence, also deserves some discussion. The full Newton
algorithm converges much faster than the ADR algorithm according to the

results of this study.

Table 6 contains the number of iterations that was required by the

full Newton and the ADR algorithms to converge to the expected solution

in the test problems. The time required for one iteration through each

algorithm was comparable, with the ADR algorithm taking only a little

longer. Clearly the full Newton algorithm was one to three orders of

magnitude faster for problems where it was also able to converge to the
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Table 6. Convergence Performance8

Problem Case Initial Full Newtog ADR
No. No. Configuration Iteration Iteration

1 1 Rectangle 7 719

2 2 Triangle 8 608

3 3 Kink ..c 1121

4 4 Sawtooth 14 862

5 1 Triangle 6 9736

6 2 Coil 69 8089

7 1 Stiff 9 387

8 2 Softest 7 80

9 3 Stiffest 15 1209

10 4 Soft 9 125

11 5 Taut 24 101

12 1 Taut 5 2290

13 2 Slack _ 5320

14 3 Sag 3 3710

aConvergence criterion was 10 on residual norm.

Two load steps were employed.

Cconvergence to unexpected solution.

dConverged solution was not accurate.
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expected solution. This comparison might be distorted somewhat by a

less than optimal implementation of the ADR algorithm, but it's doubtful

that improvements on the implementation would make up the difference in

performance shown here. A more reasonable explanation of the difference

probably lies in the fact that the test problems used here were very

small problems.

In a similar study using larger, three-dimensional, nonlinear cable

problems, Papadrakakis (1981) reports a more favorable comparison of

convergence speeds between the two algorithms studied, although even in

these results, the full Newton algorithm is faster. As the system

matrices become larger, the necessity for their triangularization and

factorization becomes more of a burden to the full Newton algorithm, and

rapidly slows it down. The same rate of decrease in convergence speed

is not experienced by the ADR algorithm since it does not require these

expensive matrix operations.

For very large, highly nonlinear problems the speed of convergence

for the ADR algorithm should be comparable to the full Newton algorithm.

However, most cable structures are generally considered to be no more

than moderately large in comparison to other types of three-dimensional

systems. Seldom does a cable structure's finite element idealization

possess more than 2,000 degrees of freedom, while this is'otherwise a

common occurrence in finite element analysis.

A possible mitigating influence on the speed of convergence of the

full Newton algorithm is that its natural quadratic convergence rate may

not be realizable for ill-conditioned systems. Even though Papadrakakis'

study considered larger cable test problems, they must also be regarded

as well conditioned, taut cable problems. He was not emphasizing the

robustness issue as has been done in the present study. Thus, the full

Newton algorithm would definitely be expected to perform at its best

when compared to the ADR algorithm. It is noted that in the present

study, whenever a slack cable condition was involved the speed of both

algorithms would d~teriorate. However, this adverse effect seems more

pronounced for the full Newton algorithm. The results of Problems 5 and

6 presented in Table 6 for the full Newton algorithm, gives evidence of

this deterioration. The algorithm was successful in this case, but the

number of iterations was inordinately large for Problem 6.
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The rate of decay of the norm (Euclidian) of the residual force

vector for the ADR algorithm is reflected in Figure 12 for each of the

14 test problems. While the ADR algorithm is clearly slow, its tenacity

is also clearly demonstrated in these graphs, particularly for the ill-

conditioned Problems 3, 5, 6, and 13.

In general, however, it should be expected that the full Newton

algorithm will out perform the ADR algorithm in terms of speed of con-

vergence over the range of problems involving well-behaved, engineering

cable structures. It is well known to possess a quadratic convergence

rate. When the test problems are small, as they were in this study, it

is extremely fast in comparison with the ADR algorithm.

A
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(a) Problems 1, 2, 3 and 4.

Figure 12. Convergence performance of ADR.
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SUMARY AND CONCLUSIONS

Solution algorithms for nonlinear static cable problems were theo-

retically studied, developed, and implemented by writing separate but

similar finite element computer programs to test and compare their

robustness characteristics. This class of problem is referred to as a

Phase I problem in the context of a two-phase problem organization of

the general solution of tensioned structures. Solutions to the Phase I

problems are widely regarded as a stumbling block in engineering design

and analysis of tensioned structures, i.e., ocean cable structures and

land-based fabric and cable structures.

Three iterative solution algorithms were studied: the modified

Newton algorithm, the full Newton algorithm, and an automated dynamic

relaxation (ADR) algorithm. The first two have been used in nonlinear

finite element programs for many years and may be regarded as status quo

solution algorithms. The third algorithm is a promising solution algo-

rithm for problems involving highly kinematically nonlinear structural

behavior.

The ADR algorithm possesses some attractive theoretical features

relative to ill-conditioned systems. These features provide constant

monitoring of the condition of the structure stiffness matrix with a

corresponding ability to control the stability of the solution process

automatically in a logical and systematic way. Typically, in Phase I

problems, the stiffness matrix exhibits pathological behavior when slack

conditions in the structure arise during the solution process. The

status quo methods mentioned do not monitor and control the structure

stiffness matrix.

The implementation of the ADR algorithm can be lengthy dopending on

the type and degree of monitor and control operations desired. This

makes the ADR algorithm somewhat subject ive and its implementation some-

what ad hoc. These characteristics would sem to diminish the chances

for a robust solution procedure but they do not. Once the.s, operations I
are in place, the algorithm is automatic and robust.
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The status quo methods, whose algorithms seem more straight forward

and not so subjective (this is less true of the modified Newton algorithm),

have a feature that detracts from robustness. The Newton-based methods

require that an arbitrary level of member prestress force be prescribed

(along with the initial guessed configuration) to avoid a singularity

condition in the cable structure's stiffness matrix at the beginning of

the solution process. This study has shown that the robustness of these

methods is adversely affected by this requirement for convergence to the

expected equilibrium solution sometimes depended on the value of pre-

scribed prestress. That is, any input data requirement that affects %

convergence in this way, runs contrary to the goal of a foolproof solu-

tion algorithm for Phase I problems.

A set of 14, small cable test problems (representative of Phase I

problems) were designed to evaluate the robustness of the three algo-

rithms studied. In these problems, the initial configurations were

purposely designed to be onerous to test the ability of the algorithms

to seek an expected static equilibrium configuration.

The numerical experiments revealed that the modified Newton algorithm

was not competitive with the other two algorithms studied. '.3
The ADR algorithm proved to be more robust than the full Newton

algorithm. It converged to the expected static equilibrium configura-

tion in every test problem. In one anomalous case, the accuracy was

poor. Conversely, the full Newton method sometimes failed to converge

to the expected solution in three cases. These cases involved condi-

tions where the solution process was required to traverse a state of

compression to a final state of tension, encountering slack conditions

along the way. Convergence to unexpected and meaningless alternative

equilibrium states occurred with the fult Newton algorithm.

In those problems where both the APR and full Newton algorithm

successfully converged to the expected equilibrium configuration, the

ADR algorithm was slower. So a trade-off between robustness and con-

vergence speed will be expected when considering application of these

two algorithms.
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The results of the numerical experiments conducted in this study

suggest that further consideration be given to both the ADR algorithm

and the full Newton algorithm in future software development in support

of ocean cable structures and land-based tensioned fabric and cable

structures.

RECONNENDATIONS

It is recommended that further development of the ADR procedure be

pursued for future application in special purpose structural analysis

software for tensioned structures.

Numerical experiments should be conducted with the SEADYN computer

program using the test problems designed in this study. This program's

performance can then be compared with the ADR algorithm. r
Proceeded by some additional research and development, more substan-

tial implementations of the ADR algorithm and the full Newton algorithm

could be accomplished. This would allow further, more meaningful com-

parison of these solution algorithms with that in SEADYN. Larger, more

physically meaningful, ocean cable problems should be designed and used

for this study.

This additional research and development study should establish

sound, robust solution algorithms around which future special purpose

finite element software for ocean cable systems can be planned and

developed.
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PMB SYS ENGRG. INC Bca. San Francisco. (A
RAYMOND INTL.. INC Soil Tech Dept W Colic). Pensauken., NJ
SANDIA LABS Library. Livermore. CA
SAUDI ARABIA King Saud Univ. Rsch (en. Ri~adh
SEATECH CORP Peroni. NMiami. FL.
SHELL OFFSHORE INC' E Doyle. Houston. I'X
SHELL 1.I CO E&P Civil Ensgrg. Houston. 'IX
SIMPISON. GUNIPERTZ & l:iLR. INC( Iill11. CL.. Arlington. MIA
SRI INTL Engrg Mech Dept (Sintons). NMenlo Park. (A
I IDEWATER ('ONSTR (0 J Fowler. Virginia Beach. VA
TRW I N(C Crawford. Redondo Beach. ('A I[)ait. Sim Be rnaidino. (',\ I 11L1! I 1111im~.(Ic .1()I.%Ikt i.

San Bernardino. (CA
UNITED KINGDOM Inst of Oceanographic So, I ibl. Wmincts
WELLSPRING (C0MM IL iZarecor. Nlarshall. VA
WESTERN INSTRUMENT (CORP Ventura. (A
WESTINGHOUSE ELE-('TRIC('0OR' librars . Pgittsbu, . P'A: ( xtec Di\) I it'. At~''i.\l

WISS. JANNEY. EI.S'NER. & ASSO(* LW Mter. Northbrook. 11
WOODWARD-'LYDE ('ONSUIITAN'lS R4 Donifiglc. I loustotl. I \ l14cg. I ill. V..t kit ~L
BARTZ. J Santa Barbara. (CA
BESIER. RF (CF. Old Saybrook. (4
BROWN. ROBERT Unisersit%. Al
BULL.OCK. TE L~a Canada. (A
CHI-AO. iC Ho'uston. TX
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CLARK. T. Redding, CA
COX. J Davis. CA
HANDLEY. DM Gulf Breeze. FL
HAYNES. B. Austin, TX
HERONEUMUS. W.E. Prof Emeritus. Amherst. MA
HEUZE. F Alamo. CA
HIRSCH & CO L Hirsch. San Diego. CA
lAY ION. JA Redmond, WA
NIEDORODA. AW Houston. Tx
PAULI, D-C Silver Spring. MD
PETERSEN. CAPT N.W. Pleasanton. CA
PRESNELL ASSOC, INC DG Presnell. Jr. Loui-wilic. KY
QUIRK. J Panama City. FL
SPIELVOGEL. L Wyncotc. PA
STEVENS. TW Long Beach. MIS
ULASZEWSKI. CDR TIJ. Honolulu. HI
VAN ALLEN. B Kingston. NY
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INSTRUCTIONS
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The Naval Civil Engineering Laboratory has revised its primary distribution lists. The bottom of the labcl
on the reverse side has several numbers listed. These numbers correspond to numbers assigned to the list of
Subject Categories. Numbers on the label corresponding to those on the list indicate the subject category and
type of documents you are presently receiving, If you are satisfied, throw this card away (or file it for later
reference).

If you want to change what you are presently receiving:

* Delete -- mark off number on bottom of label.SI

0 Add - circle number on list.

* Remove my name from all your lists - check box on list.
* Change my address line out incorrect line and write in corr'ction (PLEASE ATTACH LABEL).
S Number of copies should be entered alter the title of the sulbJc't Ltcigorlcs +ou seltt

Fold on line below and drop in the mail.

Note: Numbers on label but not listed on questionnaire are for NCE L use only, please ignore them.

p,p. ,p

,+...'..

Fold on line and staple

DEPARTMENT OF THE NAVY
POSTAOE AND FEA15 PAID

NAVAL CIVIL ENGINEERING LABORATORY DEPAR N p OF THE NAVY _-__
PORT HUENEME, CALIFORNIA 93043-5003 

DOD-aiO C I] N

OFFICIAL BUSINIESS

PENALTY FOR P*IVATE USE. SOO,
I IN*NC[L-2700/4 (IREV. !1-7).

090I-L&L.70. 41014 .- ,

Commanding Officer
Code LO8B
Naval Civil Engineering Laboratory
Port Hueneme, California 93043-5003

%_, -.. +

%-.

* , -
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DISTRIBUTION QUESTIONNAIRE

The Naval Civil Engineering Laboratory is revising its primary distribution lists.

SUBJECT CATEGORIES 28 ENERGY/POWER GENERATION
29 Thermal conservation (thermal engineering of buildings, HVAC

I SO3E FACIUTIES systems, energy loss measurement, power generation)
2 Construction methods and materials (including corrosion 30 Controls and electrical conservation (electrical systems,

control. coatingl) energy monitoring and control systems)
3 Waterfront Structures (maintenance/deterioration control) 31 Fuel flexibility (liquid fues, coal utilization, energy
4 Utilities (including power conditioning) from solid waste)
5 Explosives sftey 32 Alternate energy source (geothermal power, photovoltaic
6 Aviation Engineering Test Facilities power systems. solar systems, wind systems, energy storage
7 Fire prevention and control systems)
8 Antenna technology 33 Site data and systems integration (energy resource data. energy
9 Structural analysis and design (including numerical and consumption data, integrating energy systems)

computer techniques) 34 ENVIRONMENTAL PROTECTION
10 Protective construction (including hardened shelters. 35 Solid waste management

shock and vibration studies) 36 Hazardous/toxic materials management
11 Soil/rock mechanics 37 Wastewater management and sanitary engineering
13 BEG 38 Oil pollution removal and recovery
14 Airfields and pavements 39 Air poll'tion
I ADVANCED BASE AND AMPHIBIOUS FACILITIES 44 OCEAN ENGINEERING%
16 Base facilities (including shelters, power generation, water supplies) 45 Seafloor soils and foundations
17 Expedient roads/airfields/bridges 46 Seafloor construction systems and operations (including
18 Amphibious operations (including breakwaters, wave forces) diver and manipulator tools)
19 Over-the-Beach operations (including containerizat ion. 47 Undersea structures and materials

materiel transfer. lighterage and cranos) 48 Anchors and moorings
20 POL storage, transfer and distribution 49 Undersea power systems, electromechanical cables.

and connectors
50 Pressure vessel facilities
51 Physical environment (including site surveying)
52 Ocean-based concrete structures
' 3 Hyperbaric chambers
54 Undersea cable dynamics

TYPES OF DOCUMENTS

85 Techdata Sheets 86 Technical Reports and Technical Note% 82 NCI-L Guide & Updates N ic-

83 Table of Contents& Index to TDS 91 Phvyi Securi. remove my name t'

N
I

Or-d. *
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